The Oxygen Evolution Reaction on Passive Oxide Covered Transition Metal Electrodes in Alkaline Solution Part II - Cobalt

نویسندگان

  • Michael E. G Lyons
  • Michael P Brandon
چکیده

Details are outlined of an electrochemical investigation of the oxygen evolution reaction (OER) at passive oxide covered polycrystalline Co electrodes in aqueous alkaline solution. Kinetic studies on electrodes subjected to different pre-treatment routines, yielded different values of the Tafel slope and the reaction order with respect to OH activity. Only one mechanistic pathway could account for all observed values of these kinetic parameters. This pathway is similar, although not identical, to that proposed, in the first paper of this series, for the reaction at oxide covered Ni anodes. Using cyclic voltammetry it was shown that the mechanism for the initial passivation of Co electrodes varies with OH concentration. This in turn can have an effect on the experimental value of the OER Tafel slope, a phenomenon which can be rationalized in terms of a dual energy barrier model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Oxygen Evolution Reaction on Passive Oxide Covered Transition Metal Electrodes in Alkaline Solution. Part III – Iron

The kinetics of the oxygen evolution reaction (OER) at passive oxide covered polycrystalline Fe electrodes in aqueous alkaline solution were examined using both dc steady state polarisation and ac impedance techniques. It proved difficult to obtain reproducible polarisation data for bright anodes, and so an electrochemical pre-treatment routine was devised. Upon ageing of a given electrode spec...

متن کامل

A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base

Despite the recent renewal in interest in the oxygen evolution reaction (OER) at transition metal oxide based electrodes in alkaline solution, the details of the mechanism remain controversial. While most studies focus on a particular oxide in isolation, a consistent experimental examination of the oxides of adjacent elements is likely to be fruitful with respect to mechanistic elucidation. In ...

متن کامل

The Oxygen Evolution Reaction on Passive Oxide Covered Transition Metal Electrodes in Aqueous Alkaline Solution. Part 1-Nickel

Various aspects of the oxygen evolution reaction (OER) at passive oxide covered polycrystalline Ni electrodes in aqueous alkaline solution were investigated using electrochemical techniques. Steady state polarisation and electrochemical impedance spectroscopy (EIS) were used to measure kinetically significant parameters including the Tafel slope and the reaction order with respect to OH activit...

متن کامل

Electrocatalytic Determination of Glutathione Using Transition Metal Hexacyanoferrates (MHCFs) of Copper and Cobalt Electrode Posited on Graphene Oxide Nanosheets

A glassy carbon electrode was modified with graphene oxide nanosheets and a hybrid of copper-cobalt hexacyanoferrate. The nanocomposite was characterized by cyclic voltammetry, FT-IR and scanning electron microscopy. Cyclic voltammetry showed a stable and reversible redox pair with surface confined characteristics in phosphate buffer solution (0.1 M, pH 3). Hydrodynamic amperometry was used for...

متن کامل

Structural, magnetic and dielectric properties of pure and Dy-doped Co3O4 nanostructures for the electrochemical evolution of oxygen in alkaline media

In this study, spinel-type cobalt oxide (Co3O4) and Co3-xDyxO4 (x = 0.04 and 0.05 molar ratio) nanoparticles were synthesized via combustion method at 700 °C. Crystallite nature, phase purity and thermal analysis of the prepared compounds were investigated by PXRD, FT-IR and TGA techniques. Structural analyses were performed by the FullProf program employing profile matching with constant scale...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008